Senin, 21 Juni 2010

TEORI KINETIK GAS

A. Teori gas ideal
Mengapa balon bisa meletus ?hal ini terjadi karena 2 hal ,yaitu danya kenaikan suhu dan naiknya tekanan gas didalam balon .Apabila balon diletakkan dibawah sinar matahari dakam waktu yang lama balon ini akan pecah .Hal ini disebabkan oleh 2 hal yang tadi telah disebutkan .
Teori kinetik adalah teori yang menjelaskan sistem-sistem fisis dengan menganggap bahwa sistem-sistem fisisterdiri atas sejumlah besar molekul yang bergerak sangat cepat .Teori kinetik gas adalah teori kinetik yang digunakan untuk menjelaskan sifat-sifat suatu gas .Teori kinetik gas meninjau sifat zat secara keseluruhan sebag
ai hasil rata-rata partikel tersebut .

Sifat-sifat gas ideal ,sebagai berikut :
1. Gas terdiri atas partikel dalam jumlah banyak yang disebut molekul
2. Partikelnya bergerak bebas (3 dimensi)
3. Tidak ada gaya tarik menarik antar partikel karena jaraknya yang jauh .Akan ada gaya tarik menarik antar partikel jika terjadi tumbukan lenting sempurna
4. Partikel berbentuk molekul yang berupa bola pejal
5. Selang waktu tumbukan sangat cepat
6. Kecepatannya tetap
7.berlakunya hukum Newton tentang gerak

Kondisi suatu gas ditentukan oleh faktor tekanan , suhu dan volume .Dalam proses isitermik (suhu tetap), tekanan gas ideal berbanding terbalik dengan volumenya atau perkalian antara tekanan dengan volume adalah konstan .
Pernyataan tersebut dikenal dengan hukum Boyle dan dirumuskan sebagai berikut ;

P.V=konstan (suhu tidak berubah)
atau
P1.V1=P2=V2


Persamaan gas ideal :

PV = nRT

keterangan :

P= tekanan

V= volume

n= jumlah mol gas

R= konstanta umum gas (0.0821)

T= suhu + 273


Hukum Boyle-Gay Lusac








Keterangan :

P1 = tekanan awal (Pa atau N/m2)

P2 = tekanan akhir (Pa atau N/m2)

V1 = volume awal (m3)

V2 = volume akhir (m3)

T1 = suhu awal (K)

T2 = suhu akhir (K)

(Pa = pascal, N = Newton, m2 = meter kuadrat, m3 = meter kubik, K = Kelvin)

FLUIDA

Pengertian Fluida

Fluida adalah zat yang dapat mengalir atau sering disebut Zat Alir.

Jadi perkataan fluida dapat mencakup zat cair atau gas.

Antara zat cair dan gas dapat dibedakan :

Zat cair adalah Fluida yang non kompresibel (tidak dapat ditekan) artinya tidak berubah volumenya jika mendapat tekanan.

Gas adalah fluida yang kompresibel, artinya dapat ditekan.

Pembahasan dalam bab ini hanya dibatasi sampai fluida yang non kompresibel saja.

Bagian dalam fisika yang mempelajari tekanan-tekanan dan gaya-gaya dalam zat cair disebut : HIDROLIKA atau MEKANIKA FLUIDA yang dapat dibedakan dalam :

Hidrostatika : Mempelajari tentang gaya maupun tekanan di dalam zat cair yang diam.

Hidrodinamika : Mempelajari gaya-gaya maupun tekanan di dalam zat cair yang bergerak.

(Juga disebut mekanika fluida bergerak)

A. Fluida statik


Statika fluida, kadang disebut juga hidrostatika, adalah cabang ilmu yang mempelajari fluida dalam keadaan diam, dan merupakan sub-bidang kajian mekanika fluida. Istilah ini biasanya merujuk pada penerapan matematika pada subyek tersebut. Statika fluida mencakup kajian kondisi fluida dalam keadaan kesetimbangan yang stabil. Penggunaan fluida untuk melakukan kerja disebut hidrolika, dan ilmu mengenai fluida dalam keadaan bergerak disebut sebagai dinamika fluida.


a. fluida ideal
fluida ideal adalah fluida yang memiliki ciri-ciri sebagai berikut :
*tidak kompresibel (volumenya tidak berubah karena perubahan tekanan)
*berpindah tanpa mengalami gesekan (viskositasnya nol)

b. fluida sejati
fluida sejati memiliki ciri-ciri sebagai berikut :
*kompresibel
*berpindah dengan mengalami gaya gesekan (viskositasnya tertentu)


1. Kohesi dan adhesi
Kohesi adalah gaya tarik menarik antar molekul yang sejenis. Adhesi adalah gaya tarik menarik antar molekul yang tidak sejenis. Gaya kohesi dan adhesi mempengaruhi bentuk permukaan zat cair dalam wadahnya , misalnya sebuah tabung reaksi yang berisi cairan air raksa dan sebuah tabung reaksi yang berisi air. Permukaan tabung reaksi yang berisi air raksa berbentuk cekung karena gaya adhesi antar molekul air raksa dan kaca lebih kecil daripada gaya kohesi antar molekul air raksa. Sedangkan permukaan tabung reaksi yang berisi air berbentuk cembung karena gaya adhesi antar molekul air dengan kaca lebih besar daripada gaya kohesi antar molekul air. Permukaan yang berbentuk cekung disebut meniskus cekung dan permukaan yang berbentuk cembung disebut meniskus cembung yang menimbulkan sudut kontak (teta) >90 derajat dan meniskus cekung menimbulkan sudut kontak (teta) <90>Konsep Tegangan Permukaan
Sebelum mengenal lebih jauh tentang tegangan permukaan , mari kita melakukan percobaan . Siapkan wadah atau gelas yang berisi air dan siapkan satu penjepit kertas atau klip . Secara perlahan kita masukkan klip kedalam wadah atau gelas tersebut dan lihat apa yang terjadi ?
maka klip tersebut akan mengapung di atas permukaan air. Mengapa demikian ? dan mengapa klip tersebut tidak tenggelam ?Ketika klip diletakan secara hati-hati ke atas permukaan air, molekul-molekul air yang terletak di permukaan agak ditekan oleh gaya berat klip tersebut, sehingga molekul-molekul air yang terletak di bawah memberikan gaya pemulih ke atas untuk menopang klip tersebut (ingat kembali elastisitas). Dalam kenyataannya, bukan hanya klip alias penjepit kertas, tetapijuga bisa benda lain seperti jarum. Apabila kita meletakan jarum secara hati-hati di atas permukaan air, maka jarum akan terapung. Adanya tegangan permukaan cairan juga menjadi alasan mengapa serangga bisa mengapung di atas air.
Tegangan permukaan adalah permukaan zat cair yang meregang sehingg cairannya ditutupi seperti suatu lapisan elastis. Tegangan permukaan didefinisikan sebagai perbandingan antara gaya tegangan permukaan dan panjang permukaan.

Persamaan Tegangan Permukaan

Pada pembahasan sebelumnya, kita telah mempelajari konsep tegangan permukaan secara kualitatif (tidak ada persamaan matematis). Kali ini kita tinjau tegangan permukaan secara kuantitatif. Untuk membantu kita menurunkan persamaan tegangan permukaan, kita tinjau sebuah kawatyang dibengkokkan membentuk huruf U. Sebuah kawat lain yang berbentuk lurus dikaitkan pada kedua kaki kawat U, di mana kawat lurus tersebut bisa digerakkan.Jika kawat ini dimasukan ke dalam larutan sabun, maka setelah dikeluarkan akan terbentuk lapisan air sabun pada permukaan kawat tersebut. Mirip seperti ketika dirimu bermain gelembung sabun. Karena kawat lurusbisa digerakkan dan massanya tidak terlalu besar, maka lapisan air sabun akan memberikan gaya tegangan permukaan pada kawat lurus sehingga kawat lurus bergerak ke atas .Untuk mempertahankan kawat lurus tidak bergerak (kawat berada dalam kesetimbangan), maka diperlukan gaya total yang arahnya ke bawah, di mana besarnya gaya total adalah F = w + T. Dalam kesetimbangan, F = gaya tegangan permukaan yang dikerjakan oleh lapisan air sabun pada kawat lurus.


Misalkan panjang kawat lurus adalah l. Karena lapisan air sabun yang menyentuh kawat lurus memiliki dua permukaan, maka gaya tegangan permukaan yang ditimbulkan oleh lapisan air sabun bekerja sepanjang 2l. Tegangan permukaan pada lapisan sabun merupakan perbandingan antara Gaya Tegangan Permukaan (F) dengan panjang permukaan di mana gaya bekerja (d).







Untuk kasus ini, panjang permukaan adalah 2l. Secara matematis, ditulis :












Karena tegangan permukaan merupakan perbandingan antara Gaya tegangan permukaan dengan Satuan panjang, makasatuan tegangan permukaan adalah Newton per meter (N/m) atau dyne per centimeter (dyn/cm).

1 dyn/cm = 10-3 N/m = 1 mN/m

Berikut ini beberapa nilai Tegangan Permukaan yang diperoleh berdasarkan percobaan.

Zat cair yang

bersentuhan dengan udara

Suh u (oC) Tegangan Permukaan

(mN/m = dyn/cm)

Air 0 75,60
Air 20 72,80
Air 25 72,20
Air 60 66,20
Air 80 62,60
Air 100 58,90
Air sabun 20 25,00
Minyak Zaitun 20 32,00
Air Raksa 20 465,00
Oksigen -193 15,70
Neon -247 5,15
Helium -269 0,12
Aseton 20 23,70
Etanol 20 22,30
Gliserin 20 63,10
Benzena 20 28,90

Berdasarkan data

Tegangan Permukaan, tampak bahwa suhu mempengaruhi nilai tegangan permukaan fluida.

3. Tekanan hidrostatik

Tekanan hidros tatis adalah tekanan yang dilakukan zat cair pada bidang dasar tempatnya. Tekanan adalah gaya per satuan luas yang bekerja pada arah tegak lurus suatu permukaan , demikian rumus tekanan adlah :

P=F/A

keterangan :
P= tekanan
F= gaya
A= luas permukaan


PARADOKS HIDROSTATIS

Gaya yang bekerja pada dasar sebuah bejana tidak tergantung pa da bentuk bejana dan jumlah zat cair dalam bejana , tetapi tergantung pada luas dasar bejana ( A ), tinggi ( h ) dan massa jenis zat cair ( r )
dalam bejana.
Ph = r g h
Pt = Po + Ph
F = P h A = r g V r = m assa jenis zat cair
h = tinggi zat cair d ari permukaan
g = percepatan gravitasi
Pt = tekanan total
Po = tekanan uda ra luar


4. Hukum Pascal
Bunyi hukum pascal : tekanan yang diberikan pada fluida dalam suatu tempat tertutup akan diteruskan oleh fluida tersebut ke segala arah dengan sama besar.
Aplikasi dalam kehidupan sehari-hari adalah dongkrak hidrolik , pompa hidrolik , alat pengangkat m obil.













Permukaan fluida pada kedua kaki bejana berhubungan sama tinggi .Bila kaki 1 mendapatkan luas penampang A1 mendapat gaya F1 dan kaki 2 mendapatkan luas penampang A2 mendapat gaya F2 .. maka berlaku hukum pascal P1=P2


5. Hukum utama hidrostatik
Hukum utama hidrostatik ,berbunyi : tekanan hidrostatik pada sembarang titik yang terletak pada bidang mendatar didalam wadah suatu jenis zat ca ir sejenis dalam keadaan seimbang adalah sama .
hukum ut ama hidrostatik berlaku pada pipa U , dan tidak berlaku apabila flida tidak seimbang , bejana diisi fluida yang berbeda dan salah satu bejan a ditutup .


6. Hukum Archimedes

Hukum Archimedes menyatakan sebagai berikut, Sebuah benda yang tercelup sebagian atau seluruhnya ke dalam zat cair akan mengalami gaya ke atas yang besarnya sama dengan berat zat cair yang dipindahkannya.
Sebuah benda yang tenggelam seluruhnya atau sebagian dalam suatu fluida akan mendapatkan gaya angkat keatas yang sama besar dengan berat fluida fluida yang dipindahkan. Besarnya gaya ke atas menurut Hukum Archimedes

ditulis dalam persamaan :

Fa = ρ v g

Keterangan :

Fa = gaya ke atas (N)
V = volume benda yang tercelup (m3)
ρ = massa jenis zat cair (kg/m3)
g = percepatan gravitasi

(N/kg)

Hukum ini juga bukan suatu hukum fundamental karena dapat diturunkan dari hukum newton juga.
- Bila gaya archimedes sama dengan gaya berat W maka resultan gaya =0 dan benda
melayang .
- Bila FA>W maka benda akan terdorong keatas akan melayang

Jika rapat massa fluida lebih kecil daripada rapat massa balok maka agar balok berada dalam keadaan seimbang,volume zat cair yang dipindahkan harus lebih kecil dari pada volume balok.Artinya tidak seluruhnya berada terendam dalam cairan dengan perkataan lain bendamengapung. Agar benda melayang maka volume zat cair yang dipindahkan harus sama dengan volume balok dan rapat massa cairan sama dengan rapat rapat massa benda.
Jika rapat massa benda lebih besar daripada rapat massa fluida, maka benda akan mengalami gaya total ke bawah yang tidak sama dengan nol. Artinya benda akan jatuh tenggelam.
Berdasarkan Hukum Archimedes, sebuah benda yang tercelup ke dalam zat cair akan mengalami dua gaya, yaitu gaya gravitasi atau gaya berat (W) dan gaya ke atas (Fa) dari zat cair itu. Dalam hal ini ada tiga peristiwa yang berkaitan dengan besarnya kedua gaya tersebut yaitu seperti berikut.

• Tenggelam
Sebuah benda yang dicelupkan ke dalam zat cair akan tenggelam jika berat benda (w)
lebih besar dari gaya ke atas (Fa).

w > Fa

ρb X Vb X g > ρa X Va X g
ρb > ρa

Volume bagian benda yang tenggelam bergantung dari rapat massa zat cair (ρ)

• Melayang

Sebuah benda yang dicelupkan ke dalam zat cair akan melayang jika berat benda (w)
sama dengan gaya ke atas (Fa) atu benda tersebut tersebut dalam keadaan setimbang

w = Fa
ρb X Vb X g = ρa X Va

X g
ρb = ρa

Pada 2 benda atau lebih yang melayang dalam zat cair akan berlaku :

FA)tot = Wtot
rc . g (V1+V2+V3+V4+…..) = W1 + W2 + W3 + W4 +…..

• Terapung

Sebuah benda yang dicelupkan ke dalam zat cair akan terapung jika berat benda (w)
lebih kecil dari gaya ke atas (Fa).

w = Fa

ρb X Vb X g = ρa X

Va X g

ρb < ρa

Misal : Sepotong gabus ditahan pada dasar bejana berisi zat cair, setelah dilepas, gabus
tersebut akan naik ke permukaan zat cair (terapung) karena :

FA > W
rc . Vb . g > rb . Vb . g
rc $rb

Selisih antara Wdan FA disebut gaya naik (Fn).

Fn = FA - W

Benda terapung tentunya dalam keadaan setimbang, sehingga berlaku :

FA’ = W

rc . Vb2 . g = rb . Vb . g

FA’ = Gaya ke atas yang dialami oleh bagian benda yang tercelup di dalam zat cair.
Vb1 = Volume bend

a yang berada dipermukaan zat cair.
Vb2 = Volume benda yang tercelup di dalam zat cair.
Vb = Vb1 + Vb 2
FA’ = rc . Vb2 . g

Berat (massa) benda terapung = berat (massa) zat cair yang dipindahkan daya apung

(bouyancy) ada 3 macam, yaitu :
1. Daya apung positif (positive bouyancy) : bila suatu benda mengapung.
2. Daya apung negatif (negative bouyancy) : bila suatu benda tenggelam.
3. Daya apung netral (neutral bouyancy) : bila benda dapat melayang.

Bouyancy adalah suatu faktor yang sangat penting di dalam penyelaman. Selama
bergerak dalam air dengan scuba, penyelam harus mempertahankan posisi neutral
bouyancy.

Konsep Melayang, Tenggelam dan Terapung.

Kapankah suatu benda dapat terapung, tenggelam dan melayang ?
a. Benda dapat terapung bila massa jenis benda lebih besar dari massa jenis zat cair.
(miskonsepsi).
b. Benda dapat terapung bila massa jenis benda lebih kecil dari massa jenis zat cair.
konsepsi ilmiah)
c. Benda dapat melayang bila massa jenis benda sama dengan massa jenis zat cair.
(konsepsi ilmiah)
d. Benda dapat t engge lam bila massa jenis benda lebih besar dari massa jenis zat cair.
(konsepsi ilmiah).
e. Terapung, me layang dan tenggelam dipengaruhi oleh volume benda. (miskonsepsi).
f. Terapung, melayang dan tenggelam dipengaruhi oleh berat dan massa benda
(miskonsepsi).

Tidak ada komentar:

Posting Komentar